
1

From Domain Analysis Model to Common
Data Model - the Trials and Tribulations
of Implementing BRIDG in an Information
Technology Environment

By Terry Hardin and Isabelle deZegher

Overview

Over the past several years there has been much discussion regarding BRIDG (Biomedical Research

Integrated Domain Group) within CDISC and HL7 as a Domain Analysis Model (DAM). These discussions

center on ways that BRIDG can be used as semantic “glue” across evolving and established standards.

However, there has been little work in moving BRIDG from “glue” to a common data model (CDM) that

could be implemented within an IT infrastructure. In this new role BRIDG 3.0.1 would be used to move

from a conceptual model with abstract data types to an implementable data model with simple data

types that, in combination with business process rules, would allow for flexible system integration.

The Challenge

The most common method used throughout the industry for system integration is point-to-point. An

Enterprise Service Bus (ESB), generally presented as the solution for integration, works at the syntactic

(programming) level while the semantic (meaning) integration remains point-to-point as long as the

data models from the underlying applications are not harmonized.

With point-to-point mapping the approach is to build a set of mapping files between each pair of

systems. This does provide a “quick fix” to system integration challenges, but it also raises a significant

resource issue as the number of mappings increases with the number of systems to be supported. In

FIGURE 1 each arrow represents a set of mapping files between systems. This makes point-to-point

mappings both difficult and costly to maintain, limits re-use, and the data lacks consistency from one

system integration to the next. The problem with a point-to-point interface becomes obvious when one

(or more) system(s) require a release update: the interfaces need to be thoroughly re-tested and re-

validated as internal system variables may have changed.

CDISC Journal
C l I n I C a l D a t a I n t e r C h a n g e S t a n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

2 CDISC.org

C l I n I C a l D ata I n t e r C h a n g e S ta n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

 FIgure 1 – Point-to-Point Interface example.
 In a Cro environment, several eDC packages need to be supported, increasing the complexity of integration.

Since BRIDG is a universally accepted standard as a Domain Analysis Model (DAM), PAREXEL looked

at how we could extend this model for practical implementation to move from a point-to-point interface

paradigm to a multi-system paradigm with business process rules. In our approach, BRIDG becomes

the foundation for a common data model to be used for multi-system integration. FIGURE 2 illustrates

where each system is mapped to the common data model (PAREXEL Physical Data Model or PDM)

based on BRIDG. In this configuration each system has a mapping to/from BRIDG through the PDM. If

a specific system is updated then only the mapping to/from the PDM needs to be tested , validated and

potentially changed – not all the mappings for all related single interfaces as would be necessary in a

point-to-point configuration.

 FIgure 2 – Common Data model for multi System Integration

This is somewhat confusing, so we would like to examine the Safety Processing System as an example.

In FIGURE 1 there are five point-to-point interfaces for this system: one for each of the EDC’s in

place at PAREXEL, one for the investigator Safety Tracking System and one for the Clinical Trial

Management System. In FIGURE 2 there is just one single interface (and associated mapping) to the

CTMS

EDC1

EDC2

EDC3

IVRS

 Safety
Processing

EDMS

 Safety
Tracking

Imaging

 EDMS CTMS EDC2 EDC1 EDC3 IVRS Imaging Safety
Tracking

Safety
Processing

 PAREXEL Physical Data Model (PDM)

BRIDG (Conceptual Information Model)

BRIDG@Parexel (Logical Data Model)

XML mapping file

3 CDISC.org

C l I n I C a l D ata I n t e r C h a n g e S ta n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

PDM. If the Safety Processing System is updated only the Safety/BRIDG mapping needs to be re-tested

and validated and potentially changed – not each of the five mappings outlined in FIGURE 1.

The Value Proposition

Before we could move forward with this project it was essential that we defined the value proposition of

a common data model. Our analysis indicated the following three key values that could be obtained.

Build a global, implementable data model with precise and standard data element definitions 1.

that could be used across technology platforms and applications. This would allow the various

systems in our enterprise to “understand each other” through mapping across all the different

systems that are in use and that required interfaces. Thus, we could have true computer

semantic interoperability on top of technology integration.

Developing an organization specific implementable data model from an externally vetted 2.

conceptual model that allows for a phased and efficient approach.

BRIDG is a reasonably stable standard after 6 years of work within the clinical research

community. Even if we start with a few use cases and a subset of the model, we can be

confident that the model will remain stable when adding new use cases. In addition, using

BRIDG allows us to speed along internal consensus and provides for mapping to the HL7

Reference Information Model (RIM), while introducing ISO 21090 standards on Abstract Data

Types.

Facilitate consistent set-up of systems by having programmers consult the data element 3.

definitions provided with the common data model. Most systems used to support clinical trials

require study specific set-up, executed by different teams across the organization. Enforcing

common data element definition ensures consistency across systems and correct behavior of

the interfaces.

After discussing these value propositions with several of the internal teams the pilot project was

approved to move forward.

Next we will examine the process undertaken at PAREXEL to move from BRIDG at a conceptual level

to a BRIDG common data model implementation in our organization.

The Process

Once we made the decision to use BRIDG as the basis for integration mappings we were faced with the

task of scaling the full BRIDG model down to specific classes to implement. We determined that four

specific use cases applied regularly in studies independently of the system – patient, visit, site and user –

and these would be a good place to start to map to the appropriate BRIDG classes.

Step 1 – SCOPE: Move from BRIDG to Logical Data Model (LDM)

For this work the challenge was to take the larger BRIDG DAM and scale the sub-domains down further

to just the classes and attributes needed for the four specific use cases centered around visit, site,

patient, and user. Using a UML modeling tool we started with building the basic LDM as a starting point

to see how these four use cases would be modeled. An overview of this work is outlined below.

4 CDISC.org

C l I n I C a l D ata I n t e r C h a n g e S ta n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

Classes and Attributes

Identify concepts of interest in the interface•	

Identify relevant BRIDG classes (including related classes supporting the full concept)•	

Copy BRIDG classes within LDM•	

Look at class attributes and choose which ones are needed; keep the ones not needed in grey (as •	

they may be needed for future interfaces)

For each attribute, •	

If this is a simple data type – keep as such•	

If this is an Abstract Data Type (ADT) – follow the conformance rule, as described below, for •	

transformation of the ADT into simple data types.

Step 2 – from Abstract Data Types to Simple Data Types

The Abstract Data type (ADT) as defined in ISO 21090, like coded data types, identification and location

data types, person, address data types are complex data types represented by an object where the

attributes are in turn defined either by an ADT or by a simple data type like boolean, integer, char, ….

Our next step was consequently to define strict conformance rules defining the transformation of a

ADT into a set of simple data types while ensuring consistency across the LDM. An overview of this

work is outlined below.

Approach for conformance rules from ADT to simple data types were defined

For each ADT identify•	

Which attributes need to be kept in the logical model•	

Which attributes should not be kept in the logical model but for which a value should be •	

assumed as implicit (and can be retrieved from the conformance rules afterward in the case of

mapping)

Which attributes should not be kept at all•	

If there is more than one attribute to be kept to express the ADT, define a class •	

In the logical model replace the attribute with a link to the class (typically abstract data will •	

become a class in the logical data model)

Additionally, we defined a PAREXEL specific sub-domain that contained classes to define simple data

types. A snap-shot of this sub-domain is illustrated in FIGURE 3 below.

5 CDISC.org

C l I n I C a l D ata I n t e r C h a n g e S ta n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

 FIgure 3 – PareXel Sub-Domain for aDt Definition

 FIgure 4 – Study Conduct example with Simple Data types

class PXL Sub-Domain

DateRange

+ lowValue: characterString
+ highValue: characterString

NumberRange

+ lowValue: integer
+ highValue: integer

PersonName

+ lastName: characterString
+ givenFirstName: characterString
+ givenMiddleName: characterString
+ prefix: characterString
+ suffix: characterString

CodedString

+ value: characterString
+ code: ConceptDescriptor

Telecom

+ type: characterString
+ phoneNumber: characterString
+ email: characterString

Address

+ streeAddressLine: characterString
+ cityOrMunicipality: characterString
+ stateOrProvince: ConceptDescriptor
+ postalCode: characterString
+ country: ConceptDescriptor

InstanceIdentifier

+ identifierName: characterString
+ root: characterString

ConceptDescriptor

+ code: characterString
+ codeSystem: characterString
+ codeSystemName: characterString
+ codeSystemVersion: characterString

PhysicalQuantity

+ value: float
+ unit: ConceptDescriptor

StudyIdentifier

+ identifier: InstanceIdentifier
+ typeCode: ConceptDescriptor
+ effectiveDateRange: DateRange

View description:
This view shows PAREXEL defined classes

	

class PXL Sub-Domain

DateRange

+ lowValue: characterString
+ highValue: characterString

NumberRange

+ lowValue: integer
+ highValue: integer

PersonName

+ lastName: characterString
+ givenFirstName: characterString
+ givenMiddleName: characterString
+ prefix: characterString
+ suffix: characterString

CodedString

+ value: characterString
+ code: ConceptDescriptor

Telecom

+ type: characterString
+ phoneNumber: characterString
+ email: characterString

Address

+ streeAddressLine: characterString
+ cityOrMunicipality: characterString
+ stateOrProvince: ConceptDescriptor
+ postalCode: characterString
+ country: ConceptDescriptor

InstanceIdentifier

+ identifierName: characterString
+ root: characterString

ConceptDescriptor

+ code: characterString
+ codeSystem: characterString
+ codeSystemName: characterString
+ codeSystemVersion: characterString

PhysicalQuantity

+ value: float
+ unit: ConceptDescriptor

StudyIdentifier

+ identifier: InstanceIdentifier
+ typeCode: ConceptDescriptor
+ effectiveDateRange: DateRange

View description:
This view shows PAREXEL defined classes

6 CDISC.org

C l I n I C a l D ata I n t e r C h a n g e S ta n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

Step 3 – LDM to PAREXEL Physical Data Model

The work here was similar to that in Step 2 with relation to conformance rules. The main difference

here is there was now the denormalization of some of the attributes, and we worked to define code lists

used for the coded data types to ensure value binding.

Step 4 – Generation of XML

Here we used the modeling tool to generate the XML schema that would be used by the internal mapping

application, together with the business rules, to integrate system to system. Our first set of work was

done based on CTMS to EDC systems as this is one of the sets of systems most commonly deployed in

our business.

Step 5 – The CRUD Matrix (Create, Read, Update and Delete)

Once the mapping work was completed the challenge was to identify “who owns the data”. We worked

on developing a CRUD matrix that could be used to determine which systems were “masters” and

which systems were “slaves” in relation to the data. Where two applications share a Create (C) and/or

a Update (U), there is a potential data reconciliation issue that may need to be solved either through a

process change or through manual intervention. For this step the following provides an overview.

Data Reconciliation

Need to define the authoritative data sources •	

Understand the impact on existing business processes – and agree on change. For instance when •	

two different teams have a process describing how to enter site information in, respectively, the

EDC and the CTMS systems we must decide which system will be the master, which team will keep

entering data, and which team will have to change their process.

Agree on the data reconciliation process in the case where data is still entered in a “slave” system•	

Evaluate the possibility of implementation, and potentially identify alternatives•	

other technologies or other processes•	

or delay and discuss with vendors on an approach when technology does not allow for resolution •	

(API, Web Services, etc.)

Develop and deploy the solution as part of the interfaces•	

There were a few “bumps in the road” as we moved through this pilot, but support from BRIDG experts

in the industry helped us overcome these. Additionally, we found some “bugs” in BRIDG. Some were

as simple as the relationships in BRIDG being defined in the wrong direction, while others involved

classes that we believe should be in BRIDG, are in line with what has already been defined in BRIDG,

and are currently missing. We will be pulling these findings together to report to the BRIDG SCC so they

can determine how best to proceed.

7 CDISC.org

C l I n I C a l D ata I n t e r C h a n g e S ta n D a r D S C o n S o r t I u m o C t o b e r 2 0 11

Conclusion: The BRIDG CDM Revolution

In an era of pumping out interface updates every time a system revision occurs, implementing BRIDG

as a common data model breathes new life into the system integration process. By employing the

BRIDG CDM as a revolutionary tool to provide for a common communication infrastructure it provides

a mechanism for enforcement of data standards, and to ensure compliance with standards – helping

PAREXEL from system set-up to system integration.

In the future, a BRIDG CDM can provide for better system integration within PAREXEL, as well as

with our external customer systems. Once the BRIDG CDM infrastructure is built, it can be rolled out

to agencies and industry around the world allowing for the use of standard data sets – enabling faster

study set-up, easier communication of issues, and better data mining.

© Copyright CDISC October 2011 cdisc.org

